print()
print("=" * 80)
print("Figure 2: 1000 neurons, 4 types, dense connectivity")
print("=" * 80)
device = []
best_model = ''
config_file_ = 'signal_fig_2'
print()
config_root = "./config"
config_file, pre_folder = add_pre_folder(config_file_)
# load config
config = NeuralGraphConfig.from_yaml(f"{config_root}/{config_file}.yaml")
config.config_file = config_file
config.dataset = config_file
if device == []:
device = set_device(config.training.device)
log_dir = f'./log/{config_file}'
graphs_dir = f'./graphs_data/{config_file}'Figure 2: baseline - 1000 neurons with 4 types
This script reproduces the panels of paper’s Figure 2 and other related supplementary panels (Supp. 1, 2, 5 and 6).
Simulation parameters:
- N_neurons: 1000
- N_types: 4 parameterized by \(\tau_i\)={0.5,1}, \(s_i\)={1,2} and \(g_i\)=10
- N_frames: 100,000
- Connectivity: 100% (dense)
- Connectivity weights: random, Cauchy distribution
- Noise: none
- External inputs: none
The simulation follows Equation 2 from the paper:
\[\frac{dx_i}{dt} = -\frac{x_i}{\tau_i} + s_i \cdot \tanh(x_i) + g_i \cdot \sum_j W_{ij} \cdot \psi(x_j)\]
Configuration and Setup
Step 1: Generate Data
Generate synthetic neural activity data using the PDE_N2 model (src/neural-gnn/generators). This creates the training dataset with 1000 neurons of 4 different types over 100,000 time points.
Outputs:
- Figure 2b: Sample of 100 time series
- Figure 2c: True connectivity matrix \(W_{ij}\)
# STEP 1: GENERATE
print()
print("-" * 80)
print("STEP 1: GENERATE - Simulating neural activity (Fig 2a-c)")
print("-" * 80)
# Check if data already exists
data_file = f'{graphs_dir}/x_list_0.npy'
if os.path.exists(data_file):
print(f"data already exists at {graphs_dir}/")
print("skipping simulation, regenerating figures...")
data_generate(
config,
device=device,
visualize=False,
run_vizualized=0,
style="color",
alpha=1,
erase=False,
bSave=True,
step=2,
regenerate_plots_only=True,
)
else:
print(f"simulating {config.simulation.n_neurons} neurons, {config.simulation.n_neuron_types} types")
print(f"generating {config.simulation.n_frames} time frames")
print(f"output: {graphs_dir}/")
print()
data_generate(
config,
device=device,
visualize=False,
run_vizualized=0,
style="color",
alpha=1,
erase=False,
bSave=True,
step=2,
)

Step 2: Train GNN
Train the GNN to learn connectivity \(W\), latent embeddings \(\mathbf{a}_i\), and functions \(\phi^*, \psi^*\) with the SignalPropagation model (‘src/neural-gnn/models’). The GNN learns to predict \(dx_i/dt\) from the observed activity \(x_i\).
The GNN optimizes the update rule (Equation 3 from the paper):
\[\hat{\dot{x}}_i = \phi^*(\mathbf{a}_i, x_i) + \sum_j W_{ij} \psi^*(x_j)\]
where \(\phi^*\) and \(\psi^*\) are MLPs (ReLU, hidden dim=64, 3 layers). \(\mathbf{a}_i\) is a learnable 2D latent vector per neuron, and \(W\) is the learnable connectivity matrix.
# STEP 2: TRAIN
print()
print("-" * 80)
print("STEP 2: TRAIN - Training GNN to learn W, embeddings, phi, psi")
print("-" * 80)
# Check if trained model already exists (any .pt file in models folder)
import glob
model_files = glob.glob(f'{log_dir}/models/*.pt')
if model_files:
print(f"trained model already exists at {log_dir}/models/")
print("skipping training (delete models folder to retrain)")
else:
print(f"training for {config.training.n_epochs} epochs, {config.training.n_runs} run(s)")
print(f"learning: connectivity W, latent vectors a_i, functions phi* and psi*")
print(f"models: {log_dir}/models/")
print(f"training plots: {log_dir}/tmp_training")
print(f"tensorboard: tensorboard --logdir {log_dir}/")
print()
data_train(
config=config,
erase=False,
best_model=best_model,
style='color',
device=device
)Step 3: GNN Evaluation
Figures matching Figure 2, and supplementary Fig 1, 2, 5, and 6 from the paper.
Figure panels:
- Fig 2d: Learned connectivity matrix
- Fig 2e: Comparison of learned vs true connectivity
- Fig 2f: Learned latent vectors \(\mathbf{a}_i\)
- Fig 2g: Learned update functions \(\phi^*(\mathbf{a}_i, x)\)
- Fig 2h: Learned transfer function \(\psi^*(x)\)
# STEP 3: GNN EVALUATION
print()
print("-" * 80)
print("STEP 3: GNN EVALUATION - Generating Figure 2 panels (d-h)")
print("-" * 80)
print(f"Fig 2d: Learned connectivity matrix")
print(f"Fig 2e: W learned vs true (R^2, slope)")
print(f"Fig 2f: Latent vectors a_i (4 clusters)")
print(f"Fig 2g: Update functions phi*(a_i, x)")
print(f"Fig 2h: Transfer function psi*(x)")
print(f"output: {log_dir}/results/")
print()
folder_name = './log/' + pre_folder + '/tmp_results/'
os.makedirs(folder_name, exist_ok=True)
data_plot(config=config, config_file=config_file, epoch_list=['best'], style='color', extended='plots', device=device, apply_weight_correction=True, plot_eigen_analysis=False)Figures 2d-2h: GNN Evaluation Results





Step 4: GNN Training Visualization
Generate training progression figures showing how the GNN learns across epochs.
Visualizations:
- Row a: Latent embeddings \(\mathbf{a}_i\) evolution
- Row b: Update functions \(\phi^*(\mathbf{a}_i, x)\)
- Row c: Transfer function \(\psi^*(x)\)
- Row d: Connectivity matrix \(W\)
- Row e: \(W\) learned vs true scatter plot
# STEP 4: GNN TRAINING VISUALIZATION
print()
print("-" * 80)
print("STEP 4: GNN TRAINING - Generating training progression figures")
print("-" * 80)
print(f"generating plots for all training epochs")
print(f"output: {log_dir}/results/all/")
print()
data_plot(config=config, config_file=config_file, epoch_list=['all'], style='color', extended='plots', device=device, apply_weight_correction=True, plot_eigen_analysis=False)
# Create montage from individual epoch plots
print()
print("creating training montage (8 columns x 5 rows)...")
create_training_montage(config=config, n_cols=8)
Step 5: Test Model
Test the trained GNN model. Evaluates prediction accuracy and performs rollout inference.
# STEP 5: TEST
print()
print("-" * 80)
print("STEP 5: TEST - Evaluating trained model")
print("-" * 80)
print(f"testing prediction accuracy and rollout inference")
print(f"output: {log_dir}/results/")
print()
config.simulation.noise_model_level = 0.0
data_test(
config=config,
visualize=False,
style="color name continuous_slice",
verbose=False,
best_model='best',
run=0,
test_mode="",
sample_embedding=False,
step=10,
n_rollout_frames=1000,
device=device,
particle_of_interest=0,
new_params=None,
)Rollout Results
- Left panel: activity traces (ground truth gray, learned colored)
- Right panel: scatter plot of true vs learned \(x_i\) with \(R^2\) and slope


Step 6: Supplementary Figure 5 - Generalization Test
Test the trained GNN with modified network structure. Modified neuron type proportions (10%, 20%, 30%, 40% instead of 25% each) and modified sparse connectivity (~25% sparsity, 243,831 weights instead of 10^6).
Outputs:
- Panel b: Modified neuron type proportions histogram
- Panel d: Modified sparse connectivity matrix
- Panels e,f: Rollout at 400 time-points
- Panels g,h: Rollout at 800 time-points
# STEP 6: SUPPLEMENTARY FIGURE 5 - GENERALIZATION TEST
print()
print("-" * 80)
print("STEP 6: SUPPLEMENTARY FIGURE 5 - Generalization test with modified network")
print("-" * 80)
print("modified neuron type proportions: 10%, 20%, 30%, 40%")
print("modified connectivity: ~25% sparsity (243,831 weights)")
print()
# new_params: [connectivity_filling_factor, type0_pct, type1_pct, type2_pct, type3_pct]
new_params_supp5 = [0.25, 10, 20, 30, 40]
data_test(
config=config,
visualize=True,
style="color",
verbose=False,
best_model='best',
run=0,
test_mode="",
sample_embedding=False,
step=10,
n_rollout_frames=1000,
device=device,
particle_of_interest=0,
new_params=new_params_supp5,
)Supplementary Figure 5 Panels




Supplementary Figure 6 - Generalization Test
Test the trained GNN with network modifications. Modified neuron type proportions: 60%, 40%, 0%, 0% (types 2 and 3 eliminated) and modified sparse connectivity: ~50% sparsity (487,401 weights instead of 10^6).
Outputs:
- Panel b: Modified neuron type proportions histogram
- Panel d: Modified sparse connectivity matrix
- Panels e,f: Rollout at 400 time-points
- Panels g,h: Rollout at 800 time-points
# SUPPLEMENTARY FIGURE 6 - GENERALIZATION TEST
print()
print("-" * 80)
print("SUPPLEMENTARY FIGURE 6 - Generalization test with extreme network modification")
print("-" * 80)
print("modified neuron type proportions: 60%, 40%, 0%, 0% (types 2,3 eliminated)")
print("modified connectivity: ~50% sparsity (487,401 weights)")
print()
# new_params: [connectivity_filling_factor, type0_pct, type1_pct, type2_pct, type3_pct]
# 50% sparsity = 0.5 filling factor -> ~500,000 weights
new_params_supp6 = [0.5, 60, 40, 0, 0]
data_test(
config=config,
visualize=True,
style="color",
verbose=False,
best_model='best',
run=0,
test_mode="",
sample_embedding=False,
step=10,
n_rollout_frames=1000,
device=device,
particle_of_interest=0,
new_params=new_params_supp6,
)Supplementary Figure 6 Panels



