print()
print("=" * 80)
print("Supplementary Figure 3: 1000 neurons, 4 types, dense connectivity, no embedding")
print("=" * 80)
device = []
best_model = ''
config_file_ = 'signal_fig_supp_3'
print()
config_root = "./config"
config_file, pre_folder = add_pre_folder(config_file_)
# load config
config = NeuralGraphConfig.from_yaml(f"{config_root}/{config_file}.yaml")
config.config_file = config_file
config.dataset = config_file
if device == []:
device = set_device(config.training.device)
log_dir = f'./log/{config_file}'
graphs_dir = f'./graphs_data/{config_file}'Supplementary Figure 3: 1000 neurons with 4 types, training with fixed embedding
This script reproduces the panels of paper’s Supplementary Figure 3. To assess the importance of learning latent neuron types, we trained a GNN with fixed embedding. Models that ignore the heterogeneity of neural populations are poor approximations of the underlying dynamics
Simulation parameters:
- N_neurons: 1000
- N_types: 4 (parameterized by \(\tau_i\)={0.5,1} and \(s_i\)={1,2})
- N_frames: 100,000
- Connectivity: 100% (dense)
- Noise: none
- External inputs: none
- Embedding: none (single type training)
The simulation follows Equation 2 from the paper:
\[\frac{dx_i}{dt} = -\frac{x_i}{\tau_i} + s_i \cdot \tanh(x_i) + g_i \cdot \sum_j W_{ij} \cdot \psi(x_j)\]
Configuration and Setup
Step 1: Generate Data
Generate synthetic neural activity data using the PDE_N2 model. This creates the training dataset with 1000 neurons over 100,000 time points.
Outputs:
- Sample of 100 time series
- True connectivity matrix \(W_{ij}\)
# STEP 1: GENERATE
print()
print("-" * 80)
print("STEP 1: GENERATE - Simulating neural activity")
print("-" * 80)
# Check if data already exists
data_file = f'{graphs_dir}/x_list_0.npy'
if os.path.exists(data_file):
print(f"data already exists at {graphs_dir}/")
print("skipping simulation, regenerating figures...")
data_generate(
config,
device=device,
visualize=False,
run_vizualized=0,
style="color",
alpha=1,
erase=False,
bSave=True,
step=2,
regenerate_plots_only=True,
)
else:
print(f"simulating {config.simulation.n_neurons} neurons, {config.simulation.n_neuron_types} types")
print(f"generating {config.simulation.n_frames} time frames")
print(f"output: {graphs_dir}/")
print()
data_generate(
config,
device=device,
visualize=False,
run_vizualized=0,
style="color",
alpha=1,
erase=False,
bSave=True,
step=2,
)

Step 2: Train GNN
Train the GNN to learn connectivity \(W\) and functions \(\phi^*/\psi^*\) (without latent embeddings). The GNN learns to predict \(dx/dt\) from the observed activity \(x\).
Learning targets:
- Connectivity matrix \(W\)
- Update function \(\phi^*(x)\)
- Transfer function \(\psi^*(x)\)
# STEP 2: TRAIN
print()
print("-" * 80)
print("STEP 2: TRAIN - Training GNN to learn W, phi, psi (no embeddings)")
print("-" * 80)
# Check if trained model already exists (any .pt file in models folder)
import glob
model_files = glob.glob(f'{log_dir}/models/*.pt')
if model_files:
print(f"trained model already exists at {log_dir}/models/")
print("skipping training (delete models folder to retrain)")
else:
print(f"training for {config.training.n_epochs} epochs, {config.training.n_runs} run(s)")
print(f"learning: connectivity W, functions phi* and psi* (no embeddings)")
print(f"models: {log_dir}/models/")
print(f"training plots: {log_dir}/tmp_training")
print(f"tensorboard: tensorboard --logdir {log_dir}/")
print()
data_train(
config=config,
erase=False,
best_model=best_model,
style='color',
device=device
)Step 3: GNN Evaluation
Figures matching Supplementary Figure 3 from the paper.
Figure panels:
- Learned connectivity matrix
- Comparison of learned vs true connectivity
- Learned update functions \(\phi^*(x)\)
- Learned transfer function \(\psi^*(x)\)
# STEP 3: GNN EVALUATION
print()
print("-" * 80)
print("STEP 3: GNN EVALUATION - Generating Supplementary Figure 3 panels")
print("-" * 80)
print(f"learned connectivity matrix")
print(f"W learned vs true (R^2, slope)")
print(f"update functions phi*(x)")
print(f"transfer function psi*(x)")
print(f"output: {log_dir}/results/")
print()
folder_name = './log/' + pre_folder + '/tmp_results/'
os.makedirs(folder_name, exist_ok=True)
data_plot(config=config, config_file=config_file, epoch_list=['best'], style='color', extended='plots', device=device, apply_weight_correction=True, plot_eigen_analysis=False)Supplementary Figure 3: GNN Evaluation Results




Step 4: Test Model
Test the trained GNN model. Evaluates prediction accuracy and performs rollout inference.
# STEP 4: TEST
print()
print("-" * 80)
print("STEP 4: TEST - Evaluating trained model")
print("-" * 80)
print(f"testing prediction accuracy and rollout inference")
print(f"output: {log_dir}/results/")
print()
config.simulation.noise_model_level = 0.0
data_test(
config=config,
visualize=False,
style="color name continuous_slice",
verbose=False,
best_model='best',
run=0,
test_mode="",
sample_embedding=False,
step=10,
n_rollout_frames=1000,
device=device,
particle_of_interest=0,
new_params=None,
)Rollout Results
Display the rollout comparison figures showing: - Left panel: activity traces (ground truth gray, learned colored) - Right panel: scatter plot of true vs learned \(x_i\) with \(R^2\) and slope

